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Topological-distance-dependent transition in flocks with binary interactions
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We have studied a flocking model with binary interactions (binary flock), where the velocity of an agent
depends on the velocity of only another agent and its own velocity, topped by the angular noise. The other agent
is selected as the nth topological neighbor; the specific value of n being a fixed parameter of the problem. On the
basis of extensive numerical simulation results, we argue that for n = 1, the phase transition from the ordered to
the disordered phase of the flock is a special kind of discontinuous transition. Here, the order parameter does not
flip-flop between multiple metastable states. It continues its initial disordered state for a period tc, then switches
over to the ordered state and remains in this state ever after. For n = 2, it is the usual discontinuous transition
between two metastable states. Beyond this range, the continuous transitions are observed for n � 3. Such a
system of binary flocks has been further studied using the hydrodynamic equations of motion. Linear stability
analysis of the homogeneous polarized state shows that such a state is unstable close to the critical point and
above some critical speed, which increases as we increase n. The critical noise strengths, which depend on the
average correlation between a pair of topological neighbors, are estimated for five different values of n, which
match well with their simulated values.
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I. INTRODUCTION

The phenomenon of collective behavior (CB) is being stud-
ied with great interest in systems exhibiting nonequilibrium
phase transition under driven noise [1–7]. When the noise
parameter is tuned to a vanishingly small value, such a system,
while evolving dynamically from any arbitrary initial state,
spontaneously arrives at an ordered state. On the other hand,
for stronger noise the order parameter vanishes [8]. In some
models studied in the literature, the nature of the associated
transition has been suggested to be “continuous” [8–12],
whereas in some other examples “discontinuous” transitions
have been claimed [13,14]. The dynamical behavior of an agent
is determined by its interaction with other agents in its local
neighborhood, where the neighborhood is determined in terms
of Euclidean distance [8] or topological distance [9,10,15,16].

In this paper, we have studied the dynamics of binary
flocks with angular noise, where an agent interacts only with
its nth topological neighbor. Our extensive numerical study
indicates that for n = 1 and 2, the order-to-disorder transition
is discontinuous, but it is continuous for n � 3.

The essential idea of CB stems in the common behavior
of a collection of agents. Expectedly, a flock of birds is a
typical example of such a collection [17]. In such a collection,
agents are generally considered as short-sighted. To elaborate,
an individual agent interacts with a group of other agents
within a small neighborhood around it, who in turn interact
with their neighbors and so on. Thus, information propagates
between a pair of agents, even though they are positioned
at a large distance of separation from each other and are
able to influence each other. Eventually, all agents in the
entire flock become correlated, and the whole group acts
in unison. Therefore, even a short-range interaction among
the agents results in a unique global behavior of the entire
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group. Such a flock pattern is called “cohesive” when, on the
average, each agent maintains a certain characteristic distance
from other agents. At the same time they are said to be
“coherent,” since all agents travel along the same direction
in space. This type of motion indicates that a long-range
correlation has set in among the agents. The question is,
what kind of models or local interactions ensure such global
correlations?

The Vicsek model is a simple and well-known model in
CB [8]. In its two-dimensional version, agents are released
at random locations with randomly assigned velocities within
a unit square box, fitted with periodic boundary condition.
At any arbitrary intermediate time during the dynamical
evolution, the direction of velocity of each agent i is oriented
along the resultant velocity vi(R) of all agents within a range
R around i. The speed of each agent is assumed to be the same
and is equal to a constant v. However, in practice each agent
may make an error in judging the resultant direction of motion
and therefore a noise is introduced by topping the orientation
angle of vi(R) by a random amount �θ selected with uniform
probability. Every agent is then displaced along the updated
velocity direction. This update takes place synchronously,
i.e., velocities of all agents at time (t + 1) are determined
using the velocities of all agents at time t . A coherent
phase is observed in the noise-free case with high agent
densities. Moreover, a continuous phase transition is observed
on increasing the strength of noise as the mean flock speed
continuously decreases to zero. Moreover, facets like high
density traveling bands occurring at low noise were revealed
in later studies [13,18] and arguments were put forward in
favor of a discontinuous transition. Further, it has been argued
that by tuning the magnitude of the velocity of agents one can
switch over from continuous to discontinuous transitions [19].

On the other hand, a number of studies have been done
where the interacting neighborhood is determined using the
topological distance. For example, in Ref. [15], an agent
interacts only with its Voronoi neighbors. Therefore, even
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when the agent density is low, and the typical distance between
the agents is quite large, an agent interacts with its topological
neighbors. It was observed that the behavior of such a flock
is somewhat different from the one defined in terms of metric
distance [15]. Also, the metric free topology was used in the
hydrodynamic description of self-propelled agents where the
neighbors are determined by topological distance instead of
the metric distance [16]. Among other results, it was claimed
that the deterministic continuous theories of metric-free flock
are formally equivalent to their metric counter parts.

We describe our flocking model with binary interactions in
Sec. II. Subsequently, the simulation results for five different
cases, namely from n = 1 to 5, are described in Sec. III. In
Sec. IV we have discussed the phenomenon of persistence
as well as the information spreading processes associated in
this model. Section V describes the theoretical analysis using
hydrodynamic equations of motion for our binary flock. We
summarize in Sec. VI.

II. MODEL

In our binary flock, the direction of velocity of any arbitrary
agent i depends on the direction of velocity of its nth nearest
neighbor j and its own velocity. Let us assume that with respect
to any arbitrary reference direction, the velocity directions in
time t of the ith and j th agents are θi(t) and θj (t), respectively.
Then, in the next time step t + 1, the updated velocity direction
will be

θi(t + 1) = tan−1

[
sin (θi(t)) + sin (θj (t))
cos (θi(t)) + cos (θj (t))

]
+ �θ, (1)

where �θ is a random top-up angle, that represents the noise
variable. Its value is drawn freshly from the uniform distri-
bution within the range {−η/2,η/2},η being the continuously
tunable strength of the noise parameter. The agents’ velocities
are updated synchronously. Therefore, the entire set of the
velocity angles θi(t + 1) are determined simultaneously using
the complete set of θi(t) for all i. The order parameter is
determined by the magnitude of the resultant velocity vector,
scaled by the speed v and averaged over all N agents,

V (t) = 1

Nv
|�ivi(t)|. (2)

In the following, we have considered five different cases
for five different values of n, namely 1 to 5. Within our
numerical accuracy we present evidences to claim that the
system undergoes an order-to-disorder phase transition with
respect to the noise parameter η, the system has discontinuous
transitions for n = 1 and 2; where as for n � 3 the nature of
transition is continuous.

Numerical simulations have been performed on a L × L

planer area. The density and the speed of agents are kept
fixed at ρ0 = 1/8 agents per unit area and v = 1/2 in all
calculations. In all simulations we have kept the density
constant but varied the system size L.

III. THE RESULTS

A. The n = 1 case

For n = 1, every agent’s velocity is determined by its own
velocity and that of its first nearest neighbor. In general, if the
j th agent is the first nearest neighbor of the ith agent, that does
not necessarily imply that i is also the first nearest neighbor of
j . However, with a small probability this may actually happen,
when both the ith and the j th agents are mutually dependent
on each other for a while. Typically this happens when they
are spatially close to each other but at the same time far away
from all other agents. In this situation they would form a very
strongly bound pair. For example, for η = 0, both of them are
completely synchronized and move along the same direction
in parallel straight lines with exactly the same velocity, until
they come in the close proximity to a third agent so that i and
j cease to be mutually nearest neighbors any longer. On the
other hand, for small values of η > 0, though their motion is
random, yet they perform a nearly synchronized motion.

We start exhibiting the variation of the order parameter
V (t,η,L) against time at different noise levels η in Fig. 1.
The time evolution of the system starts from the same initial
configuration of the agents at time t = 0, that is, the same
spatial locations as well as their random velocities, are used
for all values of η. For small values of η, the system is in the
ordered phase with relatively large value of the V (t,η,L) that
fluctuates around a steady mean value in the stationary state.
On the other hand, as η is gradually increased, the system
moves into the disordered phase, the mean value 〈V (t,η,L)〉 of
the order parameter gradually decreases. The order-to-disorder
transition takes place in between these two regimes. It has been
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FIG. 1. For n = 1, L =512, and ρ0 = 1/8. Plot of the order
parameter V (t,η,L) against time t . The switching times and their
corresponding noise strengths are tc = 1 047 100 (η = 0.1184),
3 650 100 (0.1188), 12 484 400 (0.1190), and 8 964 900 (0.1196) and
for η = 0.1200 the system never switched over to the ordered state.
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FIG. 2. (Color online) Plot of the order parameter 〈V (η,L)〉 with
ρ0 = 1/8 against noise parameter η for the system size L = 128
(black), 256 (green), and 512 (red) for (a) n = 1, (b) n = 4, and (c)
n = 5.

observed that typically the system starts in a disordered state
but after some time, say tc, it switches over to the ordered
state when η is comparatively small. It is also noticed that the
switching time becomes increasingly larger as η is gradually
tuned to larger values.

In usual discontinuous transition and close to the critical
point, the system is found to be in multiple metastable states.
Therefore, while in the stationary state, the system often
switches back and forth between different metastable states
[20]. In our system, this scenario has been observed for small
system sizes, e.g., L = 128 and 256 but not for L = 512.
In Fig. 2(a) we have displayed the finite-size effect on the
variation of the order parameter against noise strength η for the
same three system sizes. Though the variation is continuous for
the two smaller lattice sizes, it is apparent that with increasing
the system size, the variation becomes increasingly sharper
at the transition point. However, for the largest system size
of L = 512, the variation of the order parameter has been
observed to be clearly discontinuous. In contrast to the ususal
scenario, our large time (up to 55 million steps) simulation
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FIG. 3. (Color online) For n =1, L = 512, and ρ0 = 1/8. (a) Plot
of the order parameter 〈V (η,L)〉 against noise parameter η exhibits a
discontinuous jump at η = 0.1197. (b) The probability density of the
order parameter P [V (η,L)] plotted against V (η,L); for the ordered
state: η = 0.1184 (black) and 0.1196 (red) and for the disordered
state η = 0.1198 (green) and 0.1250 (blue) in the sequence from
right to left. (c) Binder cumulant U (η,L) plotted against η jumps
discontinuously from ≈0.663 to ≈0.332 at ηc = 0.1197.

indicates that here the system picks up one of the two possible
states, i.e., either the ordered state or the disordered state
and remains in that state ever after. Therefore, the averaged
value of the order parameter 〈V (η,L)〉 has been measured
after the switching time tc. Consequently, a plot of 〈V (η,L)〉
against η in Fig. 3(a) exhibits a clear discontinuous jump at
the value of ηc = 0.1197(1), exhibiting that it is indeed a
discontinuous transition. Individual error bar of every point
has been calculated and they have been found to be very small,
of the order of the size of the symbols used for the plots.

The probability distribution of the order parameter
P [V (η,L)] against V (η,L) has been studied next [Fig. 3(b)].
The distribution is observed to be a singly peaked curve. The
position of the peak is large for the ordered state and small
for the disordered state. The probability distribution abruptly
shifts to the small values of V as the noise parameter η is
gradually increased. In two such plots for η = 0.1184 and
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0.1196 the system is in the ordered state. However, when η

is increased by the smallest amount of 0.0002 to the value
0.1198, the system makes a transition to the disordered state
and the distribution discontinuously shifts a large amount to
the small regime of V .

The fourth-order Binder cumulant U (η,L) is defined as

U (η,L) = 1 − 〈V 4(η,L)〉
3〈V 2(η,L)〉 . (3)

Figure 3(c) shows the variation of U (η,L) against η. It is very
much consistent with the limiting values, that is, U (η,L) ≈
2/3 for η < ηc and U (η,L) ≈ 1/3 for η > ηc. The specific
value of η where the jump in U takes place is ηc = 0.1197 and
this is recognized as the critical value ηc of the noise parameter.

B. The n = 2 case

Here, the velocity of an agent i is determined by the
velocity of its second nearest neighbor j and its own velocity.
Therefore, the presence of a third agent, say the kth agent, is
necessary. For both ith and j th agents, the kth agent may act
as their first neighbor. In turn, for the kth agent, the j th agent
may be the first neighbor and the ith neighbor may be the
second neighbor. This is one special combination in which all
three agents mutually depend on one another and form a stable
cluster. However, at every time step the noise feeds in fresh
randomness. When a fourth agent comes close to this cluster,
the cluster may not be stable any longer.

It is first observed that unlike the n = 1 case, very close to
the critical point ηc, the order parameter V (t,η,L) fluctuates
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FIG. 4. For n = 2, L = 512, and ρ0 = 1/8, order parameter
V (t,η,L) against time t for η = 0.138, 0.139, 0.140, 0.141, and 0.142
exhibited from top to bottom. The top and bottom ones are almost
completely in the ordered and the disordered phases, respectively.
Three intermediate plots show existence of metastable stationary
states.

between its values in the ordered and the disordered states
(Fig. 4). The time averaged value of the order parameter
〈V (η,L)〉 in the stationary state varies continuously with the
noise parameter η as shown in Fig. 5(a). It assumes high
values for small η and gradually decreases as η increases.
Around ηc = 0.140, its value decreases continuously at the
fastest rate. For η > ηc,〈V (η,L)〉 gradually vanishes. This is
also demonstrated in Fig. 5(b) where the probability density of
V (η,L) has been plotted for five different values of η, namely,
0.138, 0.139, 0.140, 0.141, and 0.142. While for η = 0.138
and 0.142, the distributions have single maximum, for the
intermediate values double maxima appears. For example, for
η = 0.139 the height of the right peak is larger than that of the
left peak, for η = 0.140 both peaks are of nearly same heights
whereas for η = 0.141 the left peak is taller than the right
peak. This implies that while η = 0.139 and 0.141 are in the
subcritical and supercritical regimes, respectively, η = 0.140
is nearly the value of the critical noise.
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FIG. 5. (Color online) For n = 2, L = 512, and ρ0 = 1/8. (a) The
average value of the order parameter 〈V (η,L)〉 plotted against the
noise parameter η. The plot exhibits a sharp, yet continuous variation
at η = 0.1400. (b) The probability density of the order parameter
P [V (η,L)] for η = 0.1380 (black), 0.1390 (red), 0.1400 (green),
0.1410 (blue), and 0.1420 (magenta), in the sequence from right to
left. (c) Binder cumulant U (η,L) plotted against η. At ηc = 0.1400
its value drops from ≈0.66 to ≈−0.7.
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FIG. 6. The spatial network of interaction links for L = 512, ρ0 = 1/8, and η = ηc(L). Every agent is connected to its nth neighbor.
Snapshots have been shown for n = 1 to 5 (from left to right).

The Binder cumulant U (η,L) has been displayed in
Fig. 5(c). Because of the existence of the multiple metastable
states, a sharp dip in the Binder cumulant exists. This is the
typical signature of a discontinuous transition as observed
previously in the metric distance dependent Vicsek model [8]
occurring at η ≈ 0.140 for n = 2.

To see the spatial structure of the flock one can construct the
contact network. It is straightforward to define an Euclidean
directed network with the binary flock. Here the agents are
the nodes, and a directed link is introduced from agent i to
agent j if j is the topological neighbor of i. In Fig. 6 the
stationary state spatial patterns of such networks have been
shown for the critical noise ηc and for n = 1 to 5, and for L =
512 and ρ0 = 1/8. The spatial distribution of agents are most
uniform for n =1. Then as the value of n increases, the agent
distribution become more and more heterogeneous.

C. The n � 3 cases

The situation is completely different in the n � 3 cases
when we consider the variation of the order parameter
V (t,η,L) against time t . Neither we see any switching over
from the disordered to the ordered state as in n = 1 case,
nor we observed incessant flip flop between the metastable
states of the ordered and disordered states as in n = 2 case.
The effect on the order parameter due to the finite size of the
system have been shown in Figs. 2(b) and 2(c) for n = 4 and
n = 5, respectively. Again its variation becomes increasingly
sharper as the system size increases, but remain continuous
within the entire range, typical of continuous transition. It
is also observed, for n = 3, 4, and 5, that the width of
fluctuation of V (t,η,L) becomes increasingly larger as the
critical noise strength ηc(L) is approached continuously either
from the ordered or from the disordered side. At η = ηc(L),
the fluctuation is maximum (not shown). Very similar are the
situation for the cases of n = 4 and 5. No discontinuous change
in the average value of the order parameter has been detected.
In Fig. 7(a) we exhibit the variation of 〈V (η,L)〉 against η

for n = 3, 4, and 5. Its variation near the critical point is the
sharpest for n = 3, less sharp for n = 4, and most flat for n = 5.
The critical noise strengths ηc has been estimated to be 0.151,
0.162, and 0.180, respectively, for L = 512.

In Fig. 7(b), the probability distribution of the order
parameter are shown again for n = 3, 4, and 5. Each curve has a
single maximum and the peak continuously shifts from high to
low value with increasing noise strength. In the ordered state,
because of nonzero value of the order parameter, the locations
of the three curves are at the right side of Fig. 7(b). Similarly

the three peaks at the left side correspond to strong noise
so that order parameters are nearly zero. Thus, the transition
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FIG. 7. (Color online) For L = 512, ρ0 = 1/8 data for n = 3
(black), n = 4 (blue), and n = 5 (magenta) are shown. (a) The order
parameter 〈V (η,L)〉 plotted against η, the plots exhibit sharp but
continuous decrease around the critical noise strength ηc(L). (b) The
probability density of the order parameter P [V (η,L)] has been plotted
against V (η,L). The three peaks on the right correspond to the noise
levels of the ordered state, three peaks on the left correspond to the
disordered phase, whereas the three curves at the intermediate region
have been simulated with η ≈ ηc(L). (c) On increasing η, the Binder
cumulant U (η,L) decreases continuously from ≈0.66 and attains its
disordered phase value ≈0.33 for η > ηc(L).
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FIG. 8. (Color online) For L = 512, ρ0 = 1/8 the standard
deviation σ (η,L) of the order parameter has been plotted against
η for n = 1 (black), n = 2 (red), n = 3 (green), n = 4 (blue), and
n = 5 (magenta).

from ordered state to a disordered state exhibits the typical
signatures of continuous transition.

The fourth-order Binder cumulants U (η,L) have been
exhibited in Fig. 7(c). They show a continuous transition from
its ordered phase value 2/3 to its disordered phase value 1/3
without any sharp discontinuous jump or any dip to a negative
value at any intermediate noise strength η. The decrease was
most sharp for n = 3, less sharp for n = 4, and even less
sharper for n = 5.

The standard deviation σ (η,L) of the order parameter has
also been studied for different values of n and its variation has
been observed against η in Fig. 8. Each curve has a maximum
at the critical noise value ηc and σ (η,L) decays on both sides
of ηc.

IV. STUDYING DIFFERENT CHARACTERISTIC TIMES

A. Persistence times

In this section, we study the persistence time distribution
for the agents. Persistence time τ for an agent i is a certain
interval of time through which any other agent interacts with
i. At each time instant, every agent i has another agent j to
interact. The interaction partner of i changes from one agent to
another agent, and then to another agent, etc., and therefore the
agent i passes through a series of persistence times τ1,τ2,τ3,...,
etc. In the stationary state, we have collected data of these
persistence times for each individual agent and have drawn
the probability distribution P (τ,η). We have observed that
for a fixed density ρ0 of agents, this distribution does not
depend significantly on the system size L, in contrast it does
depend very strongly on the noise parameter η. It is apparent,
intuitively, that as η decreases there is less fluctuation in the
paths of the agents and therefore the typical persistence time
gets longer. Consequently, the persistence time distribution
gets elongated over a larger period.

In Fig. 9(a) we have shown the plots of persistence time
distributions P (τ,η) against τ . On the other hand, three plots
for three different values of the noise parameter η differ quite
a lot. On a double logarithmic scale the intermediate region of
each curve is quite straight and the extent of this regime gets
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FIG. 9. (Color online) For n = 1, L = 128, and ρ0 = 1/8. (a)
The persistence time distribution P (τ,η) plotted against τ for η =
0.0001 (black), 0.001 (red), and 0.01 (blue) using log - log scale. (b)
The coordinate axes have been rescaled using ηζ1 and η−ζ2 with the
best estimates of ζ1 = 1.0 and ζ2 = 1.475. This gives the persistence
time distribution exponent γ = ζ2/ζ1 ≈ 1.48(2).

elongated as η → 0. This indicates that the persistence time
distribution is likely to follow a simple power law distribution
in the limit of η → 0,

P (τ ) ∼ τ−γ , (4)

where γ is an exponent, and its value has been estimated by the
scaling analysis with respect to η. As η increases the value of
the typical persistence time becomes shorter and therefore the
extent of the region of validity of the power law also shortens.
However, it has been observed that a nice scaling analysis can
be performed using this data. In Fig. 9(b) we have replotted
the same data after scaling the coordinate axes with ηζ1 and
η−ζ2 , where ζ1 = 1.0 and ζ2 = 1.475. Therefore, the scaling
form is

P (τ,η)η−ζ2 ∼ G[τηζ1 ]. (5)

This gives the persistence time distribution exponent γ =
ζ2/ζ1 ≈ 1.48(2).

B. Information spreading times

During the dynamical evolution of the binary flock, every
agent comes in contact with a large number of other agents.
Let us assume that at a certain time instant, when the system
has settled in its stationary state, a particular agent receives
some specific information at time t = 0. At time t = 1,
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FIG. 10. For n = 1, L = 256, and ρ0 = 1/8. The average
spreading time 〈tI (η)〉 has been plotted against η on a double
logarithmic scale. The slope of the straight line is the value of the
spreading exponent κ defined in Eq. (6) and has the value ≈0.94.

this information is shared with its topological neighbor with
probability one. Generally, at any arbitrary intermediate time,
all agents having this piece of information share it with
their topological neighbors, and this procedure continues.
Therefore, after a certain time tI (η,L), the entire collection
of agents will be having this information. We call this time the
information spreading time tI , and would like to study how
its averaged value 〈tI (η,L)〉 depends on the noise strength
η. It is intuitively clear that the smaller the strength of the
noise, the longer is the contact time between the two agents.
Therefore, we expect that as η → 0, the average contact time
would gradually increase. In fact, in the limiting situation of
η → 0, all agents will be completely coherent in the stationary
state. In this situation if there are more that one cluster, these
clusters would maintain the separate identities and would never
merge. In this case the spreading time is infinity, otherwise it
is finite. When η > 0, the spreading time decreases on the
average and we find that it decreases as a power law.

In Fig. 10 we exhibit the estimates of 〈tI (η,L)〉 against
η on a double logarithmic case. The plot appears to fit a
nice straight line, and the linearity ends at η = ηc where it
becomes horizontal. Beyond ηc the flock is randomized, the
order parameter has the vanishingly small value. Therefore,
the average spreading time remains the same, and the curve
becomes horizontal.

Therefore, within the range η < ηc, the average spreading
time follows a power law decay,

〈tI (η,L)〉 ∼ η−κ , (6)

where κ ≈ 0.94(2) has been estimated.

V. THEORETICAL ANALYSIS

A. Hydrodynamic equations of motion for binary flocks

We can also estimate the critical noise strengths as we
increase the topological neighbor number n to higher values,
using the coarse-grained hydrodynamic equations of motion
derived from microscopic rule for particle moving along its
heading direction with speed v and orientation update for

binary flocks as defined in Eq. (1). In our topology-dependent
binary interaction model critical point depends on the strength
of interaction between the two binary pairs. Strength of
interaction can be calculated using angular correlation of
two interacting agents. We find the dependence of critical
noise strength on interacting binary angular correlation α(n) =
〈mimin〉, where mi = ( cos(θi), sin(θi)) and min is the direction
of ith and its nth interacting agent, 〈...〉 is average over all
possible interacting pairs in the system. We feed the value
of α(n) for n = 1 to 5 from the microscopic simulation and
estimate the critical noise strengths for different n values and
compare them with numerical estimates ηc(n).

Using the update rule for the position Ri and orientation
θi of the ith agent we can write the coarse-grained hydrody-
namic equations of motion for density and polarization order
parameter defined as

ρ(r,t) =
∑

i

δ[r − Ri(t)], (7)

P(r,t)ρ(r,t) =
∑

i

miδ[r − Ri(t)], (8)

coarse-grained equation for density is same as previously
derived in Ref. [21] for metric distance model

∂ρ

∂t
= −v∇ · (Pρ) + Dρ∇2ρ, (9)

but order parameter equation will be different with no explicit
density dependence of alignment term,

∂Pρ

∂t
= α1(η,α)Pρ − α2(P · P)Pρ + −v1

2
∇ρ + DP ∇2P,

(10)
where α1(η,α) = [ (1−2η2)2√

2(1+α)
− 1] and v is the self-propelled

speed of the particle; Dρ and DP are the diffusion constants in
density and order parameter equations, and α2 is in general a
function of microscopic parameters of the model, but we treat
α2 as constant. Because of Galilean invariance [2], Eq. (10)
in general has convective nonlinearities ∝P∇P, but close to
order-disorder transition this effect is negligible, hence it has
been ignored. The mean field value of critical noise strength
ηc is obtained where the coefficient α1(η,α) vanishes,

ηc = 1√
2

[
1 − 1√

2

√
(1 + α)

]1/2

. (11)

Critical value of noise at which the transition takes place
depends very much on the angle-angle correlation α(n)
between the agent and its binary pair. The more they are
correlated, the more the value of the critical noise strength
ηc(n) shifts towards the smaller values. In Fig. 11 we plot and
compare the values of ηc(n) obtained analytically as well as
numerically for n = 1 to 5.

B. Linear stability of homogeneous polarized state close to
order-disorder transition

Steady state solution of homogeneous Eqs. (9) and (10)
are ρ = ρ0 and P = P0ẑ. We add small perturbations ρ =
ρ0 + δρ and P = (P0 + δPz)ẑ + δPx x̂ and we can write the
linearized equations of motion for small perturbations, δρ,δPx
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FIG. 11. Plot of mean-field estimate of the critical noise strength
ηc(n) vs. angle-angle correlation α(n) averaged over all possible
interacting pairs. The upper curve (filled squares, solid line) represents
the numerical data, whereas, the lower curve (opaque circles, dashed
line) represents the analytical result (Eq. (11) in the text).

and δPz,

∂tδρ = −vP0(∂zδρ + ∂xδρ) − vρ0(∂zδPz + ∂xδPx)

+Dρ∇2δρ, (12)

∂t δPz = 2P 2
0 α(η)δPz − v

2ρ0
δzδρ + DP ∇2δPz, (13)

∂tδPx = − v

2ρ0
δxδρ + DP ∇2δPx, (14)

using Fourier transformation,

δY (k,S) =
∫

dr exp(ik · r) exp(St)dt, (15)

we get linear equation in Fourier space,

∂t

⎛
⎝ δρ

δPz

δPx

⎞
⎠ = M

⎛
⎝ δρ

δPz

δPx

⎞
⎠,

where matrix M is given by coefficient of different terms in
Eqs. (12), (13), and (14). We can solve above coupled equation
for mode S. If the real part of S, Re[S] > 0 homogeneous
polarized state is unstable and if Re[S] < 0, homogeneous
polarized state is stable to small perturbation. We can solve
for modes analytically for two different directions θ = 0 and
π
2 , where θ is the angle between wave vector q and ordering
direction. For θ = π

2 , S is determined by

(S + vP0iq + Dρq
2)(S + DP q2) − v2

2
q2 = 0, (16)

and both modes are always stable. For θ = 0,

(S + vP0iq + Dρq
2)(S + 2α1(η) + DP q2) + v2

2
q2 = 0.

(17)
Hence,

Re[2S] = −α1(η) − D̄q2 ±
1
2v2q2

(
3
8ρ2

0 + 1
)

2α1(η) + D̄q2
, (18)

where D̄ = Dρ + DP , one of the modes can become unstable
if

1
2v2q2

(
3
8ρ2

0 + 1
)

> (α1(η) + D̄q2)(2α1(η) + D̄q2), (19)

as we approach the critical point from the subcritical regime.
Very close to critical point, we can write η = ηc + η − ηc =
ηc + �η, where ηc is the critical value of η at which α1(η)
changes sign and �η = η − ηc, and since we are approaching
critical point from below �η < 0. Close to critical point we
can expand α1(η) about the critical ηc,

α1(η) = α1(ηc) + α′
1(ηc)�η + O(�η)2

= α1(ηc) − α′
1(ηc)|�η| + O(�η)2, (20)

where α′
1(ηc) = ∂α1

∂η
|ηc

. Since α1(η) = η2
c (1 − η2

η2
c
), hence

α′
1(ηc) = −2ηc, and we can write, up to linear order in �η

as η → ηc,

α1(η) = α1(ηc) + 2ηc|�η| + O(�η)2

= |�η|((ηc + η) + 2ηc

) + O(�η)2

= 4|�η|ηc + O(�η)2. (21)

However, the state is unstable if Re[S] > 0 and stable if
Re[S] < 0. Hence, the condition for instability to leading order
in �η and for small q limit is

v2
(

3
8ρ2

0 + 1
)

> 24|�η|ηcD̄. (22)

As we approach critical point, instability is more pronounced
and the smaller the value of ηc, instability occurs at a small v

value. As shown in Fig. 11 and Eq. (11), ηc decreases as we
decrease n. Hence, for small n instability appears at smaller v

as shown in Fig. 12. We can also estimate critical wave vector
at the onset of instability close to the critical point:

D̄2q2
c = 1

2v2
(

3
8ρ2

0 + 1
) − 12ηc|�η|D̄. (23)

Hence, in the subcritical regime, as we approach closer and
closer to the critical point, α1(η) is small and instability
will occur at a larger wave vector or a smaller length. Also,
instability occurs at large qc for small ηc (Fig. 13), and this
is in agreement with our numerical simulation where we find

FIG. 12. Plot of critical v2
c vs. ηc for various n values. The value

of ηc is estimated from numerical simulation for corresponding n

value and the critical vc is calculated from Eq. (22) for fixed density
ρ0 = 0.125.
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FIG. 13. Plot of critical wave vector qc vs. ηc below which
instability occur Eq. (23) for speed v = 0.5 and density ρ0 =
0.125. Critical wave vector decreases with decreasing ηc and hence
decreasing n.

formation of bands occurring at larger system size L as we go
from the first (n = 1) neighbor to the second (n = 2) neighbor.

VI. SUMMARY

We have studied the collective behavior of a binary flock
using Vicsek dynamics. In this flock the velocity of an agent
depends on the velocities of its nth topological neighbor and its
own. The velocity field of all agents are updated synchronously
maintaining the periodic boundary condition on a collection
of agents confined within a two-dimensional square space.
Extensive numerical simulations reveal that for all values of
n, a order to disorder phase transition takes place at certain
critical threshold ηc of the noise parameter. In particular,
for n = 1, it is a different kind of discontinuous transition:
The long time stationary state of the system is either in the
ordered phase, or in the disordered phase. At a certain ηc

for n = 1 it switches over from one phase to the other. The
case of n = 2 exhibits ordinary discontinuous transition where,
around the critical point, the system flip flops between the two
metastable states corresponding to the ordered and disordered
phases. Probability distribution of the order parameter has
been observed to be characterized by doubly humped function,
whereas the fourth order Binder cumulant exhibits a negative
dip at the critical noise strength. For n � 3 the system exhibits
continuous transitions, signatures of which are evident in the
continuous variation of their order parameters against noise
strengths, continuous variation of their Binder cumulants and
singly peaked distributions of their order parameters.

Persistence time is the duration of the time interval through
which an agent has a specific topological neighbor. The
probability distribution of persistence times has been found
to follow nice power law decaying functions and independent
of the value of the topological neighbor n. Further, we have
studied the information spreading dynamics in the binary
flocks. How long it takes on the average to spread an
information localized at a certain agent to spread to all agents
of the system? It has been seen that the mean value of this time
decays like a power law as the noise level increases from zero.

Finally, this system of binary flocks has been studied again
using the hydrodynamic equations of motion. Linear stability
analysis of the homogeneous polarized state close to the order-
disorder transition has been done. The average correlation
between a pair of agents, who are the topological neighbors,
has been calculated. Using the value of this quantity, the critical
noise strength has been estimated and the correspondence has
been found to be good.
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