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A simple model of the two dimensional collective motion of a group of mobile agents
has been studied. Like birds, these agents travel in open free space where each of
them interacts with the first n neighbors determined by the topological distance with a
free boundary condition. Using the same prescription for interactions used in the Vicsek
model with scalar noise it has been observed that the flock, in absence of the noise,
arrives at a number of interesting stationary states. One of the two most prominent
states is the “single sink state” where the entire flock travels along the same direction
maintaining perfect cohesion and coherence. The other state is the “cyclic state” where
every individual agent executes a uniform circular motion, and the correlation among the
agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and
contracts periodically between a minimum and a maximum size of the flock. We have
studied another limiting situation when refreshing rate of the interaction zone (IZ) is the
fastest. In this case the entire flock gets fragmented into smaller clusters of different
sizes. On introduction of scalar noise a crossover is observed when the agents cross over
from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent
on the strength of the noise η and diverges as η → 0. An even more simpler version of
this model has been studied by suppressing the translational degrees of freedom of the
agents but retaining their angular motion. Here agents are spins, placed at the sites of
a square lattice with periodic boundary condition. Every spin interacts with its n = 2, 3,
or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole
when interactions are anisotropic with n = 2 and 3; but it is completely frozen when the
interaction is isotropic with n = 4. These spin configurations have vortex-antivortex pairs
whose density increases as the noise η increases and follows an excellent finite-size
scaling analysis.
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1. INTRODUCTION
Flights of a flock of birds or a swarm of bees are well known exam-
ples of living systems exhibiting collective behavior which are
often modeled by groups of self-propelled mobile agents [1–4].
These groups are called “cohesive” since each agent maintains a
characteristic distance from other agents and at the same time
they are “coherent” since all agents move along a common direc-
tion. In addition, the internal structure and organization of a
flock is found to be complex and far from being static. Examples
include leader-follower relationships in bird flocks [5], fission-
fusion events in fish schools [6] and social groups in human
crowd [7]. Such flocks often travel over long duration covering
distances much larger than the size of the flocks along arbitrary
directions and therefore effectively an infinite amount of space
is available to the flock for it’s motion. It is also known that
while individual agents often change their directions of flight the
whole flock maintains motion along the same direction in a stable
fashion.

A generic feature of collective motion is, agents are short-
sighted. While an individual agent’s behavior is influenced by the
behavior of a small group of local agents around it, the whole
group behaves in unison. In other words, a short range interac-
tion among the agents may lead to a unique global behavior of the
entire group which implies the existence of a long range correla-
tion among the agents. Therefore the question is, given a random
distribution of positions and velocities what kind of short range
dynamics can lead to global correlation reflected in cohesion and
coherence among the agents.

This question was first explored in an assembly of self-
propelled particles, known as the Vicsek model [8]. Here particles
(agents) are released at random locations within a unit square
box on the x − y plane with periodic boundary condition and
with random velocities. However, in the deterministic motion the
direction of velocity of each agent i is oriented along the resultant
velocity vRi of all agents within an interaction zone (IZ) of range
R around i. In reality each agent may make an error in judging
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the resultant direction of motion and this has been introduced
in the stochastic version of the model where noise is introduced
by topping the orientational angle of vRi by a random amount
�θ. Each individual agent is then moved along the updated veloc-
ity direction. A coherent phase is observed in the noise-free case
with high agent densities. Moreover a continuous phase transition
is observed on increasing the strength of noise where the mean
flock speed continuously decreases to zero. However, facets like
high density traveling bands occurring at low noise were revealed
in later studies [9, 10] and arguments were put in favor of a
discontinuous transition.

In a recent field study by the Starflag group on flocks of
Starlings [11], it has been shown that the interactions among
the birds of a flock do not depend on the metric distance but
on the topological distance. More quantitatively they found that
each bird interacts with a fixed number of neighbors, about six or
seven in number, rather than all neighbors within a fixed radial
distance. Observing flocks of Starlings the angular density distri-
bution of neighboring birds have been found to be anisotropic
e.g., a bird is more likely to keep its nearest neighbor at its two
sides rather than on the front and back. Fishes [12] have also
been found to interact with neighbors determined by topological
rules. Theoretical investigations [13, 14] revealed that the behav-
ior of topology based models are very different from metric based
models [15].

The concept of graph theory based topology was, however,
used [16] to analyze the Vicsek model itself from the perspec-
tive of control theory. The metric distance based interactions were
modeled using graphs with “switching topology.” Such studies
also derived the conditions for the formation of coherent flocks
for agents with fixed topologies [17]. The relevance of underlying
graphs or networks on the nature of collective motion has also
been studied [18, 19].

The observations of the StarFlag group prompted us to study
the collective motion of flocking phenomena in two dimen-
sions using the interactions depending on the topological dis-
tance. Most crucially we have obtained very interesting stationary
states which have not been observed before, mainly the cyclic
states (CS). At the same time an increasingly large number of
states are found to be completely cohesive and coherent. The
paper is organized as follows. In section 2 we describe our topo-
logical distance dependent model for collective motion. The
connectivity among such a collection of agents has been studied
as Random Geometric Graph (RGG) in section 3. The station-
ary states of such flocks have been studied in section 4, the two
most prominent states being the Single Sink State and the Cyclic
State. The effect of the noise on the dynamics and the critical
point of transition have been studied in section 5. Study of the
dynamics of the flock with the fastest refreshing rate of the IZ
has been done in section 6. A simpler version of the model with
its vortex-antivortex states have been studied on the square lat-
tice in section 7. Finally we summarize and discuss our results in
section 8.

2. MODEL
In our model the IZ has been defined in the following way.
During the flight, each agent i interacts with a short list of n
other selected agents that constitute the IZ. It determines it’s

own velocity using the Equation (1) given below following a
synchronous dynamics. In general, the agent often refreshes the
group of agents in IZ. For example, at the early stage, when the
flock is relaxing to arrive at the stationary state and also during
some stationary states, the inter-agent distances change with
time. Every time the IZ is refreshed, we assume the criterion of
selecting n agents is that they are the first n nearest neighbors of
i. We introduce at this point a “refreshing rate” which controls
how frequently an agent updates it’s IZ. In this paper, we study
two limiting situations when these rates are slowest and fastest. In
the slowest rate, the agents do not change at all the list of other n
agents in their IZs. The IZ for each agent, constructed at the ini-
tial stage, remains the same ever after, even if n initial neighbors
of an agent no longer remain nearest neighbors as time proceeds.
The other limiting case is when the refreshing rate is the fastest,
the IZ is refreshed for every agent at each time step. The slowest
case has been discussed in sections 4 and 5. The fastest refreshing
rates have been discussed in section 6. For the spins on the square
lattice discussed in section 7, these two cases actually mean the
same since the spins are firmly fixed at their lattice positions.

The number n of agents in IZ is considered as an integer
parameter of the model. As in Vicsek model [8] the system is
updated using a discrete time dynamics. While the speeds v of
all agents are always maintained to be the same, the orientational
angles θi of their velocities are updated by the direction of the
resultant of velocity vectors of all n agents in the IZ and the agent
i itself (Figure 1),

θi(t + 1) = tan−1 [
�j sin θj(t)/�j cos θj(t)

]
(1)

where the summation index j runs over all (n + 1) agents in
IZ. The whole flock moves in the infinite space. Following this
dynamics, the flock reaches the stationary state after a certain
period of relaxation time. It is observed that the stationary state
depends on the initial positions, initial velocities of the agents,
as well as the neighbor number n. Though a number of dif-
ferent stationary states have been observed, often the state is
a fixed point or a cycle. We have studied the statistical prop-
erties of these fixed points and cycles and observed that cohe-
sion and/or coherence are indeed present in different stationary
states.

There are two crucial differences of our model and the Vicsek’s
model which we summarize as follows: (a) We have used the
same prescription of interaction that had been claimed in the
StarFlag experiment. Accordingly, an agent here interacts with a
fixed number n of nearest neighbors and not with all neighbors up
to a fixed radial distance. It may be noted that, these two mecha-
nisms are essentially serving the same purpose. Both prescriptions
keep the mutual interactions active among the local agents only.
Therefore our choice of neighborhood and Vicsek model’s range
of interaction are actually on the same footing. (b) No periodic
boundary condition is imposed in our model. Therefore agents
move out in open space, yet they often form flocks that exhibit
considerable amount of cohesion and coherence. Compared to
the Vicsek model, use of the free boundary condition makes our
model less restrictive.

In the limiting case, when the IZ is refreshed at the slowest rate,
it may appear that for an agent, any of the n neighbors can be at an
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A B

FIGURE 1 | (A) A flock of N = 16 agents with n = 5 neighbors in the
interaction zone and at any arbitrary time t. The central agent is denoted by
the subscript 0 and the velocity vectors of this agent and its five neighbors in

the interaction zone are shown using red arrows. (B) In the next time step
the velocity of agent 0 is calculated by Equation (1) which is along the
resultant of all n + 1 velocity vectors and has the magnitude v .

FIGURE 2 | The undirected RGG with N = 1000 nodes distributed

randomly within a square box with a free boundary condition. Each node
is linked to its n nearest neighbors; n = 1, 2, 3, and 4 increasing from left to

the right. For small n there are many components of the graph which merge
with one another as n increases. The largest component has sizes 9, 150,
988, 1000.

arbitrarily large distance. Certainly this is not the case for a cohe-
sive and coherent flock by definition. Moreover, we will see in the
following that for most of the stationary states, the neighboring
agents indeed remain within the close proximity of an agent.

3. RANDOM GEOMETRIC GRAPHS
At the initial stage N agents are uniformly distributed at random
locations within a unit square box on the x − y plane without
periodic boundary condition. A RGG [20] is constructed whose
vertices are the agents. At the same time for any arbitrary pair of
vertices i and j, j is defined as a neighbor of i if it is among the n
vertices nearest to i. Then an edge is assumed to exist from i to j.
This implies that the edges are in general “directed” since if j is the
neighbor of i then i may or may not be the neighbor of j. Therefore
the resulting graph is inherently a directed graph. However, one
can also define a simplified version of the graph by ignoring the
edge directions and consider the graph as an undirected graph. In
the following we refer such an undirected graph as the RGG.

In Figure 2 we exhibit the pictorial representation of an undi-
rected RGG for N = 1000 as n is increased step by step. For small

values of n the graph has many different components. As n is
increased the components grow gradually in size, merge into one
another and finally the RGG becomes a single component con-
nected graph covering all vertices for a certain value of n. Here
we have shown four figures for n = 1, 2, 3, and 4. The randomly
selected positions of all vertices are exactly the same in these fig-
ures. The size of a component is measured by the number of
vertices in that component. In this figure the RGG becomes fully
connected for n = 4.

The structure and connectivity of RGG depend on the ini-
tial positions of N vertices. Therefore we have first studied how
the fraction g(N, n) of connected graphs grows with n when the
flock size N is increased. For a particular RGG the connectivity is
checked using the “Burning Algorithm” [21] where the fire, initi-
ated at an arbitrary vertex, propagates along the edges and finally
burns all vertices if and only if the RGG is a single component
connected graph.

In Figure 3 we show the plots of g(N, n) against n for different
values of N. To find out if a minimum value of the neigh-
bor number n exists, one can artificially prepare a linear initial
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configuration of agents where each agent has it’s right neighbor
as the nearest one. This corresponds to n = 1 but occurrence
of such a configuration by random selection of positions of the
agents is extremely improbable. Numerically we find that for
small n the g(N, n) takes vanishingly small values. However, on
increasing n, g(N, n) increases very rapidly and when n is around
7, g(N, n) ≈ 1 i.e., nearly all configurations become connected.
With increasing flock size N the curves slowly shifts to higher
values of the neighbor number n.

Only those flocks whose RGGs are single component con-
nected graphs are considered for their dynamical evolution. In
case of the slowest refreshing rate of the IZ, the initial neighbor

FIGURE 3 | The fractions g(N, n) of single component connected

graphs, in a sample of 1000 RGGs, are plotted against n. For N agents
this fraction grows as the number of neighbors n is gradually increased.
System sizes N are 256 (black), 512 (red), 1024 (green), 2048 (blue), and
4096 (magenta), increased from left to right. The number of independent
configurations used for each value of n is 1000.

list is maintained for the entire dynamical evolution of the flock
and is never updated even if all n initial neighbors of an agent no
longer remain nearest neighbors as time evolves. This means that
the set of agents’ velocities {�vi(t + 1)} is fully determined using
the detailed knowledge of the set {�vi(t)}. Implication of this is, the
positions and velocities are completely decoupled during the time
evolution since the actual positions of agents do not play any role
to determine the velocities. Therefore the topological connectivity
of RGG remains invariant and is a constant of motion.

4. STATIONARY STATES
4.1. SINGLE SINK STATES
Initially the N agents are randomly distributed with uniform
probabilities within the unit square box on the x − y plane. If the
corresponding RGG is fully connected then all agents are assigned
the same speed v but along different directions. The angles θi

of the velocity vectors with respect to +x axis are assigned by
drawing them randomly from a uniform probability distribution
between 0 and 2π. As time proceeds the agents soon come out of
the initial unit square box and spread out in the open two dimen-
sional space. After some initial relaxation time the flock arrives at
the stationary state. One of the most common stationary state is
the one where the flock is completely coherent and cohesive. The
entire flock moves along the same direction without changing the
flock’s spatial cohesive shape and therefore θi(t) = C for all i and
are independent of time. We call these states as the “Single Sink
States” (SSS). Therefore this stationary state is a fixed point of the
dynamical process. A picture of such a flock has been shown in
Figure 4A.

4.2. CYCLIC STATES
In CS the velocity directions θi of all agents change at a constant
rate in absence of noise. Therefore the angular velocity θ̇i(t) = D

A B

FIGURE 4 | Flocks of size N = 512 and n = 10, moving with the speed of

v = 0.03 without noise. (A) Single sink state: the fully cohesive and
coherent motion of the flock is exhibited by its position at three different
instants: 10,000 (blue), 11,000 (green), and 12,000 (magenta). Three straight
line trajectories of individual agents are also shown. The frame size is 90 × 90

units. (B) Cyclic state: the stationary state pulsating flock has been shown at
different time instants: 173,000 (black), 176,000 (red), 180,000 (green),
188,000 (blue), 192,000 (brown), 197,000 (violet), and 200,000 (magenta). The
time period is 28,835. Two individual agents’ circular trajectories with radius
≈137.67 are also shown. The frame size is 600 × 600 units.
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for all agents is a constant of motion. Each agent moves in a
circular orbit of its own depending on its initial position, but
their radii and time periods are the same. Consequently the mag-
nitude of the resultant velocity of the whole flock in the CS has
also a constant value but its direction changes with the same
angular velocity. In addition typically the shape of the flock is
another circle though with some irregularities and interestingly
its radius changes periodically with the same period of individual
agents. Therefore the whole circular flock pulsates, i.e., periodi-
cally expands and contracts where each agent moves on its own
fixed circular trajectory. We explain this motion in Figure 4B by
plotting the flock at different instants of time and also show two
individual agent trajectories.

For an arbitrary CS, let the probability that the radius of
individual agent’s circular trajectory between R and R + dR be
P(R)dR. Given that the uniform speed of the agents is v and their
angular velocities are θ̇, the radius of the circular trajectory is
R = v/θ̇. We have studied a large number of such CS and mea-
sured the radii of the agents’ orbits. In Figure 5 we show the
probability distribution of these radii which follows a power law
distribution P(R) ∼ R−τ with τ = 1.99(2).

Throughout this paper we have used only one value of the
agent speed, i.e., v = 0.03. If the speed is reduced by a cer-
tain factor a CS state remains CS but all the characteristic
lengths are reduced by the same factor. The radius of the cir-
cular orbit of every agent and also the size of the flock are
reduced by the same factor, the time period remaining the same.
Therefore it appears that even in the continuous limit of v →
0, the characteristic features of the flocks reported here remain
same.

Starting from the initial state, when the random positions and
velocities are assigned to all agents, the fractions of stationary
states that exhibit the SSS and CS are estimated and are denoted
by gSSS(N, n) and gCS(N, n), respectively. In Figure 6 these two
quantities are plotted against the neighbor number n for differ-
ent flock sizes N. For a certain N, gSSS(N, n) gradually increases
with increasing n (Figure 6A). For a given flock size N, how-
ever large, if the neighbor number n is increased to N − 1, then
on using the dynamics mentioned in Equation (1) the station-
ary state flock must be both cohesive and perfectly coherent i.e.,
gSSS(N, N − 1) = 1. No stationary state other than SSS can exist
in this limiting situation. On the other hand when n < N − 1
but n is increased, then gSSS(N, n) also gradually increases and
approaches the value of unity for any arbitrary value of N. At
the same time, gCS(N, n) decreases with n for a fixed N but
increases with N for a fixed n (Figure 6B). Finally in Figure 6C
we plot the sum gSSS(N, n) + gCS(N, n) which is less than unity
for small n, but on increasing n, this sum gradually increases
and reaches ≈ 1 for n = 8 for all N. It is therefore concluded
that if the neighbor number is increased all other states gradu-
ally disappear and only SSS and CS states mostly dominate but
ultimately for even larger value of n, it is the SSS state that only
survives.

4.3. OTHER STATES
In addition there are a number of other stationary states, few of
them are described below, but the list may not be exhaustive.

FIGURE 5 | The probability distribution of the radii of the individual

agent’s circular orbits in the cyclic states. The power law has an
exponent of τ = 1.99(2).

(1) Each agent has a constant velocity but their directions are
different for different agents. For example the i-th agent has its
direction of velocity θi = Ci. In this case the agents, after some
relaxation time, moves outward radially. The shape of the flock
is approximately circular, again with some irregularities, and the
radius of the flock increases at a uniform rate. We call these states
as the “Distributed Sink States” (DSS). In Figure 7A an example
of the DSS has been shown. The position of the flock is shown at
t = 500,000 and three agents’ trajectories have been shown using
different colors.

(2) In another type of stationary state, the trajectories of the
individual agents are very similar to cycloids. Each agent moves
radially outward in a nearly cycloidal motion (Figure 7B). A con-
siderable number of agents form a flock of circular shape but
others are scattered around this circular flock. We call these as
“Cycloid States.”

(3) Thirdly, there can be rosette type stationary states. The
trajectory of each agent is like a rosette which never closes and
lies between two concentric circles. Consequently in the long
time limit the trajectories fill the space between the two circles.
This means that the mean separation between consecutive inter-
sections of the agent trajectory with a radial section gradually
vanishes as the trajectory evolves for a longer time. We call these
as “Space-Filling States.” Three such rosette trajectories and the
position of the flock have been shown in Figure 7C.

Few points may be mentioned here about the characteristics of
the different stationary states. For example a possible anisotropic
effect on the stationary states may exist due to the choice of
the unit square box for releasing the agents. Initially the posi-
tions of the agents are selected randomly within unit square box
on the two dimensional plane. We have compared that if the
agents’ locations are selected randomly within a circle of radius
1/2, no appreciable change have been observed in the fractions of
different stationary states.

The center of mass of the entire flock has different kinds of tra-
jectories in different stationary states. In SSS, the center of mass
moves in a straight line exactly similar to all other agents. In CS,
the trajectory of the center of mass is also a circle, but it’s radius
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A B C

FIGURE 6 | The occurrence of two most prominent stationary

states when the neighbor number n has been varied over a

range from 5 to 10 and for different flock sizes N = 64 (black),

256 (red), 512 (green), and 1024 (blue). (A) The fraction gSSS(N, n)

of SSS has been plotted against n. (B) The fraction gCS(N, n) of CS
has been plotted against n. (C) The sum gSSS(N, n) + gCS(N, n) has
been plotted and it is seen that beyond n ≈ 8 the sum is
approximately unity.

A B C

FIGURE 7 | Flocks of size N = 512 and n = 5, moving with the speed of

v = 0.03 without noise. The positions of the agents are marked by black
dots and three individual agent’s trajectories are shown in each case by red,
blue, and magenta colors. (A) Distributed sink state: every agent moves
along a fixed direction θi = Ci of its own which is different in general from the

directions of motion of other agents. (B) Cycloid state: in the stationary state
the trajectory of each agent is a cycloid. (C) Space-filling state: the trajectory
of an agent never repeats itself but gradually fills up the space between two
concentric circles. The frame sizes are 40,000, 15,000, and 350 units,
respectively.

is not the same as the radius of the orbit of the individual agents,
but it is some what larger. In DSS, the dynamics of the center of
mass is similar to that of the agents. Although, the shape of the
flock is approximately circular, but the fact that, at any instant the
positioning of the agents on the circumference is not uniform,
makes the center of mass move radially outward in a straight line.
Motion is indeed unbounded. In cycloid states, the trajectory of
the center of mass is also a cycloid and radially outward. The
motion here is also unbounded. In space filling states, the trajec-
tory of the center of mass is rosette type. In this case the trajectory
is bounded.

How sensitive are the final stationary states on the choice of
the random initial values of {xi, yi} and {θi} for the N agents?
To study this point, we tried with a flock that evolves to a CS
from a certain initial configuration. Now we again evolve the
same flock, but this time we slightly change the initial configu-
ration randomly by xi = xi + a.10−4.r and yi = yi + a.10−4.r
where r is a random number. The directions {θi} of the veloc-
ity vectors are maintained the same. We then tune a, and found
that with 0 < a < 1.70 the stationary state is still a CS, but with
different values of the orbit radius. When a ≥ 1.75 the station-
ary state becomes SSS. We conclude that with some amount
of perturbation the character of the stationary state remains

same, but with even stronger perturbation the stationary state
changes.

A preliminary calculation with our model in three dimensions
shows the following features. In general, to obtain connected
graphs, the value of n needs to be large compared to what is
required in two dimensions. Almost always the dynamics leads to
a SSS in the steady state. We did not find any other state starting
from random initial conditions.

5. DYNAMICS IN PRESENCE OF NOISE
Studying the role of noise on the dynamics of the flock is very
crucial. It is assumed that every agent makes a certain amount
of error in judging the angle of its velocity vector at each time
step. More precisely given the angles θ(t) of velocity vectors of all
n + 1 agents within the IZ at time t, it first calculates the resultant
of these vectors using the Equation (1). It then tops up this angle
by a random amount ζ(η) which is uniformly distributed within
{−η/2,η/2}. Therefore the modified Equation (1) reads as:

θi(t + 1) = tan−1 [
�j sin θj(t)/�j cos θj(t)

] + ζ(η). (2)

The role of the noise is to randomize the deterministic dynam-
ics and quite expectedly the stationary state structures of the
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flocks exhibited in the SSS and CS patterns are gradually lost.
We have studied the effect of noise on both these states by grad-
ually increasing the strength of the noise η. In both cases we
use a flock of N = 512 agents, each of them interacts with n =
10 nearest neighbors and travel with speed v = 0.03. Initially
all of them are released within the square box of size unity.
We first run the dynamics without any noise i.e., η = 0 and
ensure that the stationary state pattern is indeed a single sink
state. As the dynamics proceeds we calculate the maximal dis-
tance Rm(t) and the average distance Ra(t) of an agent from
the center of mass (xc(t), yc(t)) of the flock. In Figure 8A
we plot these two quantities against time and they are exactly
horizontal curves which are the signatures of the SSS state.
These simulations are then repeated for η > 0 and the vari-
ations of Rm(t) and Ra(t) have been shown in Figures 8B–D
for η = 0.2, 0.5, and 1, respectively. In all four cases the flock
starts with the same positions and velocities of the agents. It
is seen that on increasing the strength of noise the stochas-
ticity gradually sets in and the variations of Rm(t) and Ra(t)
gradually become random. A similar plot has been exhibited in
Figure 9 for the CS but for only a single flock. The Figure 9A
shows the zero noise case and the curves are periodic. However,
when the noise level is increased (Figures 9B,C) it distorts the
periodicity. With small values of η, the variations are slightly
distorted from the periodic variations, however, with larger
strength of noise the distortion is much more. Finally for η = 1
the fluctuations look random and similar to those in the SSS
(Figure 9D).

Next we calculated the mean square displacement 〈r2(t,η)〉
from the origin as time passes. The averaging has been done for a
single agent within a flock and over many such independent flock
samples. The noise strength has been varied over a wide range of

values. In Figure 10 we have displayed the variation of 〈r2(t,η)〉
against the time t using a log − log scale for six different values of
η. Here again we consider flocks with fully connected RGGs. On
the other hand with zero noise these configurations may lead to
any of the possible stationary states. Simulating up to a maximal
time of T = 108 we observed a cross-over behavior in the mean
square displacement. When η is very small 〈r2(t,η)〉 ∼ t2κ with
κ ≈ 1 which implies that the flock maintains a ballistic motion at
the early stage, i.e., the coherence is still maintained during this
period. On the other hand after a long time one gets κ = 1/2
which indicates the diffusive behavior. This implies that even if
a little noise is applied for a long time, the effect of the noise
becomes so strong that the flock can no longer maintain a cohe-
sive and coherent structure any more and agents diffuse away
in space. Therefore for any value of η there is a cross-over from
the ballistic to diffusive behavior. Consequently a cross-over time
tc(η) can be defined such that for short times t << tc(η) the
dynamics is ballistic with κ = 1 and for t >> tc(η) the dynam-
ics is diffusive with κ = 1/2. In Figure 10 we show this behavior
and observe that the crossover time depends explicitly on the
value of η and diverges as η → 0. The value of tc(η) has been
estimated by the time coordinate of the point of intersection of fit-
ted straight lines in the two regimes of Figure 10: for t << tc(η)

and for t >> tc(η). The value of tc(η) so estimated diverges as
tc(η) ∼ η−2.52.

This transition is more explicitly demonstrated using a plot of
the Order Parameter (OP) M(η) against η (Figure 11). The OP
is defined as the time averaged magnitude of the resultant of all
agents’ velocity vectors, scaled by its maximum value

M(η) = 〈|�N
j = 1vj|〉/(Nv) (3)

A B

C D

FIGURE 8 | Effect of noise is exhibited on a single flock (N = 512 agents,

each having n = 10 neighbors) which goes to a single sink state without

any noise. Variation of the maximal radius Rm (blue) and the average radius

Ra (red) have been shown with different strengths of the noise parameter:
(A) η = 0, (B) 0.2, (C) 0.5, and (D) 1. The initial positions and velocities are
same in all four cases.
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A

C

B

D

FIGURE 9 | Effect of noise is exhibited on a single flock (N = 512 agents,

each having n = 10 neighbors) which goes to a cyclic state without any

noise. Variation of the maximal radius Rm (blue) and the average radius Ra

(red) have been shown with different strengths of the noise parameter: (A)

η = 0, (B) 0.2, (C) 0.5, and (D) 1. The initial positions and velocities are same
in all four cases.

where 〈...〉 denotes the time average over a long period of time in
the stationary state. In Figure 11A we have plotted M(η) against
η at an interval of �η = 0.1 for different system sizes from N =
64 to 1024. In these simulations the initial conditions are cho-
sen to be completely coherent so that the velocity vectors of all
agents are in the same direction. In the absence of noise this
situation is maintained and M(0) = 1 at all times for all sys-
tem sizes. However, for η > 0 noise sets in, but in the stationary
state one still gets a non-zero OP. On further increasing η the
OP decreases monotonically and ultimately vanishes. Therefore
there exists a critical value ηc(N) of the noise parameter where
the transition from the ordered state to disordered state takes
place. It is observed in Figure 11A that as the system size N is
enlarged the transition becomes more and more sharp and shifts
to the regime of small η. Further we have calculated the Binder
cumulant G(η) = 1 − 〈M4(η)〉/3〈M2(η)〉2 and plotted against η

in Figure 11B for the same system sizes [22]. The value of G(η)

drops from a constant value of around 2/3 at the small η regime
to about 1/3 for large values of η.

The transition point ηc can be estimated in the following two
ways. For each curve in Figure 11A we calculate the value of
η1/2(N) for which M(η) = 1/2. We define η1/2(N) to be the
characteristic noise level where the transition takes place. By
interpolation of the plots in Figure 11A of the points around
M(η) = 1/2, we have estimated η1/2(N). These estimates are then
extrapolated in Figure 11C as:

η1/2(N) = η1/2(∞) + AN−1/ν. (4)

On tuning the trial values of ν very slowly we found that for
ν ≈ 2.86 the error in the least square fit of the above finite-
size correction formula is minimum. Therefore the extrapolated
η1/2(∞) ≈ 1.70 is the critical noise strength ηc according to

FIGURE 10 | The mean square displacement 〈r2(t, η)〉 of an agent from

the origin has been plotted against time for different values of the

noise parameter η = 0.2 (black), 0.5 (red), 1.0 (green), 2.0 (blue), 3.0

(magenta), and 4.0 (brown). The flock size N = 512 and the neighbor
number n = 10. Two short straight lines are the guides to the eye whose
slopes are κ = 1/2 and 1.

our estimate. A similar calculation has also been done using the
Binder cumulant. From this calculation we estimated ηc = 1.82
and ν = 3.50. The differences between the two estimates are con-
sidered as the error in the measured values which are 0.12 and
0.64 for ηc and ν, respectively.

Since the agents are uniformly distributed initially, the edges
of RGG also are homogeneously distributed as shown in Figure 2
for n = 4. However, with time evolution these edges change their
positions but their connectivity do not change, i.e., the end nodes
of every edge are always fixed since the neighbor list does not
change. How they look in the stationary state has been exhibited
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A B C

FIGURE 11 | (A) The stationary state order parameter M(η) and (B)

the Binder cumulant G(η) have been plotted for the system sizes
N = 64 (black), 128 (red), 256 (green), 512 (blue), and 1024
(magenta) where all agents start with their initial velocities in the

same direction. System size increases from right to left. (C)

Extrapolation of ηc(N) values determined from (A) and (B). We
obtained ηc(N) = 1.70 + N−1/2.86 and ηc(N) = 1.82 + N−1/3.50,
respectively.

FIGURE 12 | The position of a flock (N = 512, n = 10) in CS by blue dots

and links by red lines. The frame size is 150 units.

in Figure 12. This is the picture of the circle shaped flock in
the cyclic state. The blue dots represent the agents and the red
lines represent the edges. What is interesting to note is that the
system self-organizes itself so that not only agents but also the
edges are constrained to be within a very limited region of the
space. Very few edges criss-cross the flock from one side to the
opposite side. Initially each agents had its n neighbors at its
closest distances. After passing through the relaxation stage and
arriving at the stationary state, when the shape of the flock is com-
pletely different from its initial shape, most of the agents maintain
their connections with other agents in their local neighborhood
only.

6. THE FASTEST REFRESHING RATE OF THE INTERACTION
ZONE

Here we consider the case corresponding to the fastest refreshing
rate of the IZ, i.e., when every agent updates its n nearest neigh-
bors at every time step. Consequently, the RGG is no longer a

constant of motion in this case and is updated at each time step.
While performing simulations of this version, we first notice that
in the long time stationary state the entire flock becomes frag-
mented with probability one into different clusters. For a flock
of N agents with neighbor number n, the minimum number
of agents in a cluster is n + 1. An agent of a particular cluster
has all n neighbors which are members of that cluster only. In
the stationary state all agents of a cluster has exactly the same
direction of velocity and the entire cluster moves along this direc-
tion with uniform speed v. Therefore, the velocity direction θ

of a particular cluster can be looked upon as the identifica-
tion label of that cluster. The shape of the flock is approxi-
mately circular since each cluster travels outward with same speed
(Figure 13A). Moreover, within a cluster if the agent i is a neigh-
bor of the agent j then j is also a neighbor of i. Therefore the
sub-graph of the entire RGG specific to a cluster is completely
undirected and the corresponding part of the adjacency matrix
is symmetric (Figure 13B). This immediately implies that the
N × N adjacency matrix of the entire flock can be written in a
block-diagonal form by assigning suitable identification labels of
different agents.

A natural question would be how the frequency distribution
D(s) of different cluster sizes depends on the cluster size s. To
answer this question a large number of independent flocks have
been simulated and each of them was evolved to its stationary
state. In the stationary state the sizes of the individual clusters
are measured using the burning method. In Figure 14A a plot
of D(s) vs. s for s > n has been shown on a semi-log scale for
N = 512 and n = 5, the data being collected using a sample size
of 20,000 independent flocks. Apart from some noise at the tail
end and a maximum around the smallest value of s the plot fits
well to a straight line, implying an exponentially decaying form
of the frequency distribution. We conclude D(s) ∼ exp(−s/sc)

where sc ≈ 7.2(1).
Next, the average number of clusters 〈ns(N, n)〉 has been cal-

culated and plotted in the inset of Figure 14B for N = 128, 256,
and 512 and n = 5 on a log − log scale. Again, apart from the tail
end, the plots fit very nicely to parallel straight lines, the slopes of
which are estimated to be 1.168(5). In the main part of Figure 14B
a scaling has been shown which exhibits a nice data collapse,
corresponding to the following form

〈ns(N, n)〉N−1.1 ∼ n−1.168. (5)

www.frontiersin.org January 2014 | Volume 1 | Article 35 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Interdisciplinary_Physics/archive


Bhattacherjee et al. Cyclic and coherent states...

A B

FIGURE 13 | (A) Positions of a flock of N = 512 agents with n = 5 neighbors
in the interaction zone and at four different time instants: 100 (black), 200
(red), 300 (green), and 400 (magenta). The RGG has been updated at every
time step. Three individual agents’ straight line trajectories have also been
shown. There are a total of 29 clusters. (B) The sub-graph of the RGG

corresponding to a specific cluster of 16 agents have been shown. An arrow
has been drawn from the agent i to the agent j if j is one of the n neighbors
of i. There are a total of (16 × 5) / 2 = 40 distinct links and each link is
directed in both directions. It may also be noted that whole set of links are
restricted to the nodes of the cluster only.

A B

FIGURE 14 | (A) The frequency distribution D(s) of the cluster sizes s seems
likely to have an exponentially decaying form exp(−s/sc) where sc ≈ 7.2. (B)

The inset shows the plot of the average cluster size 〈s(N, n)〉 for N = 512 and

n = 5 with neighbor number n on a log − log scale: N = 128 (blue), 256
(green), and 512 (red). In the main plot the vertical axis has been scaled by
N1.1 which leads to a data collapse.

This implies that as the neighbor number n increases, there would
be fewer clusters in the stationary state. On the other hand, for
a specific value of n, the average cluster number grows with the
flock size as N1.1. Assuming that the above scaling relation holds
good for the entire range of n, for a given N one can define
a cut-off value of n = nc such that 〈ns(N, nc)〉 = 1 which leads
to nc(N) ∼ N1.1/1.168 = N0.94. However, our simulations suggest
that due to the presence of an upward bending at the tail end,
the above scaling relation does not work at this end and nc(N) is
actually of the order of N.

7. VORTICES ON THE SQUARE LATTICE
In this section we studied a simpler version of our model where
every agent is a spin vector. They are no more mobile, their posi-
tions are completely quenched at the sites of a regular lattice, but

the directions θi(t) of the spins are the only dynamical variables
that evolve with time following Equation (1). More specifically,
spins are placed on a square lattice with different choices for the
first n neighbors and we study the spatio-temporal patterns that
emerge during the time evolution of the angular variables {θi(t)}.
The arrangement of the spins allows to draw a parallel with the
dynamics of planar spins in the two dimensional XY model.

The connections between the Vicsek model [8] and the 2d
XY model [23] have been explored since long [3, 19, 24]. It is
well known that in the limit of speed v → 0 the dynamics of
the Vicsek model would exactly map on to the finite tempera-
ture Monte Carlo dynamics of the 2d XY model. However, in the
latter model any long-range ordered phase is absent. Instead a
quasi-long-range ordered phase appears at the low temperatures
and the transition to the disordered phase is associated with the
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simultaneous unbinding and increase of vortex-antivortex (VAV)
pairs. In the low temperature phase VAV pairs are to be found in
tightly bound states. We find that our model defined on the square
lattice also gives rise to VAV pairs and we determine the density of
such pairs, as a function of the noise amplitude η.

We define the IZ of an agent with respect to its n nearest
neighbors on the square lattice of size L × L with the periodic
boundary condition. For n = 2, the IZ includes the top and the
right nearest neighbors. For n = 3, the left nearest neighbor is also
included and in the case of n = 4, all the four nearest neighbors
are included. We notice that our model for the n = 4 case and the
Vicsek model, with spins similarly placed on the square lattice, are
the same. As before we study the dynamics of the spin system with
and without noise.

In the absence of noise, beginning from arbitrary initial condi-
tions for θi’s, the dynamics results in the formation of VAV pairs.
For n = 2 and 3, the interactions are anisotropic. Consequently
the entire spin pattern in the stationary state as well as all VAV
pairs are mobile and in general all the spin orientations θi’s change
with time. In comparison, for n = 4, all the θi’s remain frozen in
time which also implies that all the VAV pairs are anchored. We
find that the choice of the IZ, in addition to the periodic boundary
condition, fixes the direction of motion of the VAV pairs. In the
Figure 15A an instantaneous configuration of the spins is plotted
for a lattice with L = 64 and n = 2. In general for the n = 2 case
the entire spin pattern moves on the average along the diagonal
direction from top-right to bottom-left. For the case, n = 3, the
vortices travel from the bottom to the top.

Let the V(η, L) be the number of VAV pairs observed at noise
η in lattice of size L. The number of VAV pairs observed at zero
noise, V(0, L) is plotted against the value of n in the Figure 15B
for different lattice sizes. We observe during the time evolution

for a given initial condition that the number of VAV pairs initially
decays and then becomes stationary. However, different initial
conditions leads to different values at the stationary states. The
bars indicate the dispersion that is observed for different initial
conditions which lead to non-zero number of VAV pairs. For
the lattice size L = 128 we wait for 105 steps before calculating
number of VAV pairs. The inset to the Figure 15B shows the per-
centage of initial conditions that lead to non-zero number of VAV
pairs. We find as lattice size increases, arbitrary initial conditions,
almost always, lead to states with VAV pairs.

The nature of the time variation of the spin angle θi’s for the
cases n = 2 and n = 3 are found to be quite complex. In the
Figure 16A we plot the time series corresponding to the oscilla-
tion of the x-component of a typical spin vector for L = 64 and
n = 2. The corresponding power spectrum apparently reveals the
presence of three basic frequencies f0, f1, and f2 all of which are
rational multiples of 1/L (Figure 16B). The time evolution can be
explained as a periodic oscillation with f1 and f2 (since f2 = 2f1)
riding on a very slow mode. These features carry over to L = 128
as well. We find that in the case of n = 3, the spectrum is similar
but the frequencies are not simple multiples of 1/L.

It is known that metastable vortices are produced at low tem-
peratures in the 2d XY model when equilibrium is achieved
beginning from arbitrary initial conditions. However, these vor-
tices are not responsible for the VAV unbinding transition [25].
Therefore, we study the effect of noise by “cooling down” [26]
the system to zero noise level starting from a high value of noise.
At each noise level the system initially passes through 105 time
steps; after this relaxation it passes through an additional 104 time
steps and then moves to the next lower level of noise. We begin
around the value of noise given by η = 3.7 and decrease η by an
amount 0.07 in each step. This method suppresses the generation

A B

FIGURE 15 | (A) Vortex-antivortex pairs of the spin systems in the
stationary state in a square lattice with size L = 64 and n = 2 with zero
noise. The orientations of the spins change with time in such a way so
that the entire spin pattern with vortices and the antivortices move with a
uniform speed from the top-right corner to the bottom-left corner. Vortices
and antivortices are marked by filled red and blue circles. (B) The number

V (0, L) of vortex-antivortex pairs at zero noise for different values of n in
lattices of three different sizes: L = 32 (circles), 64 (squares), and 128
(triangles). The bars indicate the standard deviation in the values obtained
from around 100 configurations in each case. In the inset the percentage
of configurations which lead to steady states with vortex pairs is plotted
against n.
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A B

FIGURE 16 | (A) The x-component of a typical spin vector is plotted against
time for lattice with L = 64 and n = 2 at zero noise. (B) The corresponding
power spectrum indicates the presence of three basic frequencies

f0 = 1/(4096L), f1 = 1/(3L), and f2 = 2/(3L). The higher frequencies can be
expressed as combinations of the f1 and f2 and essentially become
harmonics of f1 since f2 = 2f1.

A B C

FIGURE 17 | The figure shows proliferation of vortices as noise is

increased in a square lattice of length L = 64 with n = 4. (A) For η = 0.15
there are no vortices, (B) for η = 0.35 vortices begin to appear, there are only

two vortex-antivortex pairs, and (C) for η = 0.40 twenty one vortex-antivortex
pairs can be seen. Filled circles of two different colors, red for vortices and
blue for antivortices, have been drawn around the vortex centers.

A B C

FIGURE 18 | The behavior of different quantities against noise for lattice

sizes L = 32 (black), 64 (red), and 128 (green) with values of n = 2

(circle), 3 (square), and 4 (triangle). (A) The variation of the order parameter
M(η, L) against noise η are shown for L = 128 and for n = 2, 3, and 4. (B)

The vortex-pair density ρ(η, L) against η. (C) Scaling collapse of ln(1/ρ(η, L))

against nγ/η. For the collapse we use γ = 0.28. The dashed straight line,
having slope α = 2.68, is a guide for the eye and indicates the power-law
nature in the low noise regime.

of the VAV pairs at low noise. At zero noise the vortices are absent
in contrast to the statistics discussed in the previous paragraphs
where the cooling down method was not employed.

At zero noise we find the spin system reaches the globally
ordered state where all the spin vectors are oriented in the same

direction. We believe that this is due to the finite size effect of the
lattice. The spin configuration at low noise of η = 0.15 has been
shown in the Figure 17A for L = 64 and n = 4 where not only
vortices are absent but the long-range order is also not present.
At the higher noise levels VAV pairs start appearing and there
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is a rapid increase in the number of pairs with further increase
in noise. All the VAV pairs appearing initially are tightly bound
i.e., lattice spacing is small between the members in a pair as in
Figure 17B) but at higher noise members in a pair are seen to
unbound (Figure 17C).

The OP M(η) tends to unity as η → 0 as shown in the
Figure 18A. In Figure 18B we plot the vortex-pair density,
defined as ρ = V/L2. The natural collapse of the plots belonging
to different system sizes indicates a functional dependence of ρ on
n and η, which is independent of L. To understand this behavior
we obtain the collapse of ln (1/ρ(η, L)) vs. nγ/η with γ = 0.28 in
Figure 18C for different values of L and n. The plot reveals that

in the region where VAV pairs start proliferating ρ ∼ exp(−Anβ

ηα ),
where A, β, and α are constants. We estimate α by averaging slope
of individual curves which yields α = 2.68 ± 0.13. This gives β =
γα = 0.75. This result is in contrast to the relation ρ ∼ exp(− a

T ),
where a is VAV pair energy and T is the temperature for the 2d
XY model [26].

8. SUMMARY AND DISCUSSION
To summarize, we have studied a simple model of the collective
behavior of N interacting mobile agents which travel in the open
free space. In this model we have incorporated the observation
of the StarFlag experiment which advocates the necessity of using
the topological distance instead of the metric distance. Each agent
interacts with a group of n selected agents around it who are posi-
tioned within an IZ. Every agent freshly selects at a certain rate
the group of agents within the IZ. The selection criterion is to
choose the first n neighbors. In this paper we have studied two
limiting situations, i.e., when the refreshing rates are fastest and
the slowest. We first studied when the refreshing rate is slowest i.e.,
when the IZ for each agent is determined at the beginning and is
never updated. All the agents follow the interaction rule in Vicsek
model. It has been observed that in absence of noise, starting from
a small localized region of space the agents gradually spread as
time passes, so that after some relaxation time the flock arrives at
a stationary state. The most prominent stationary states are the
single sink state and the cyclic state. Using numerical methods we
claim that the frequencies of occurrence of other stationary states
like the DSS, cycloid states and the space-filling states goes to zero
as the neighbor number increases to about 8. Beyond n = 8 only
the SSS and CS states dominate. Finally as n approaches the flock
size N, only the SSS states dominate.

Interestingly, it has also been observed that the actual metric
distances of the n topological neighbors do not become arbitrar-
ily large in all these stationary states in absence of noise. For the
SSS states it is true exactly. For the CS also the topological neigh-
bors remain within a finite distance from an agent (see Figure 12).
Moreover, when the refreshing rate is the fastest, every fragmented
cluster travels in a single sink state. Therefore, it is this close prox-
imity of the neighbors that gives rise to the cohesiveness present
in our model.

Further, on the application of noise a crossover takes place
from the ballistic motion to the diffusive motion and the
crossover time depends on the strength of the noise η, which
diverges as η → 0. Further the calculation of the OP M(η) and
the Binder cumulant G(η) lead us to estimate the critical noise ηc

required for the continuous transition from the ordered to the
disordered phase. Secondly, when the refreshing rate is fastest,
each agent freshly determines its neighbors in the IZ at every
time step. In the stationary state the flock gets fragmented into
a number of smaller clusters of different sizes. The agents in a
cluster move completely coherently, different cluster has different
direction of motion.

A simpler version of the model has also been studied in the
limit of the speed v → 0 when the positions of spins are com-
pletely frozen at the sites of a square lattice, but their orientational
angles θi(t) evolve with time again by the Vicsek interaction. Here
for n = 4 the spin configuration is completely static. On the other
hand for n = 2 and 3, the entire spin configuration moves along
the diagonal and parallel to the asymmetry axis, respectively.
Further we have observed that the density of vortex-antivortex
pairs increases with the strength of the noise and fits to a nice
finite-size scaling behavior.

Overall, our findings suggest that complex spatio-temporal
patterns may emerge in the interplay between an underlying
network structure and collective motion. We believe that our
study would also be relevant in the general problem of consen-
sus development in networked agents [27] and as such issues like
undesired synchronization observed in real-world networks [28].
We observed that multiple frequencies develop during oscillations
of different dynamical variables. Whether there is a possibility
that a cascade of frequencies develop eventually leading to chaotic
behavior remains an open question.
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